SUSAN & HENRY SAMUELI
COLLEGE OF HEALTH SCIENCES

Sue & Bill Gross Nursing &
Health Sciences Hall

Post Construction BMP
Long Term Maintenance
Plan
TABLE OF CONTENTS

INSPECTION AND MAINTENANCE SCHEDULE 1

RECORD DRAWINGS .. 2
CONTECH SYSTEM MANUAL .. 5
<table>
<thead>
<tr>
<th>Component</th>
<th>Inspection Schedule</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contech System</td>
<td>Annually in Spring or as required</td>
<td>Follow Contech O&M Manual.</td>
</tr>
<tr>
<td>Catch Basins</td>
<td>Annually in Spring or as required</td>
<td>Inspect grate for serviceability. Remove any trash or debris for around the catch basin and inlet grates. Clear any trash or sediment from within the catch basin. Remove any hydrocarbons from within the catch basin using absorptive pads from any structure. Replace or stabilize rock around catch basin if located within the planter areas.</td>
</tr>
<tr>
<td>Drain Inlets</td>
<td>Annually in Spring or as required</td>
<td>Inspect grate for serviceability. Remove any trash or debris for around the catch basin and inlet grates manually or by vacuum truck. Clear any trash or sediment from within the catch basin manually or by vacuum truck. Remove any hydrocarbons from within the catch basin using absorptive pads from any structure.</td>
</tr>
<tr>
<td>Landscape Areas</td>
<td>Annually in Fall or a required after severe rainfall</td>
<td>Maintain shrubs as normally required, replace any dead or dying shrubs. Inspect all slopes and embankments and replant areas with bare soil or sparse growth. Replace mulch as necessary. Inspect all gravel areas at the perimeter maintenance strip. Reinstall gravel if it has been disturbed or eroded away.</td>
</tr>
<tr>
<td>Roadways / Parking Lots</td>
<td>Annually or as required</td>
<td>Clear parking lots of trash and debris as required. Use street sweeper to remove any fine sediment or sand after heavy rains or as required. Visually inspect roads and curbs for damage that may impede water flow to the storm drain system.</td>
</tr>
</tbody>
</table>
THE UNDERSIGNED HEREBY APPROVES THE ATTACHED (4) PAGES INCLUDING THE FOLLOWING:

- PIPE STORAGE = 22,570 CF
- MAINLINE PIPE GAGE = 16
- WALL TYPE = PERFORATED
- DIAMETER = 96"
- FINISH = ALT2
- CORRUGATION = 5x1

CUSTOMER DATE

THE PIPE SHOULD BE FULLY PERFORATED IN ACCORDANCE WITH AASHTO M 36, SECTION 8.3.2.2, AND USING CLASS 2 PERFORATIONS. THE TOTAL OPEN AREA OF THE PERFORATIONS WILL BE A MINIMUM OF 2.3% OF THE PIPE SURFACE AREA.

BULKHEADS SHALL BE 12-GAGE OR HEAVIER STEEL AND THE COATING WILL MATCH THE SPECIFIED CMP COATING. BULKHEAD PLATES SHALL BE FULLY WELDED ONTO THE CMP WITH STEEL REINFORCEMENT AS REQUIRED. THE STEEL REINFORCEMENT SHALL BE POST COATED WITH ZINC RICH PAINT PER AASHTO M 36. BULKHEAD DESIGNS SHALL SATISFY THE REQUIREMENTS SHOWN IN CHAPTER 8 OF THE NCSPA CSP DESIGN MANUAL AND CALCULATIONS SHALL BE PROVIDED TO THE ENGINEER OF RECORD (EOR) FOR APPROVAL UPON REQUEST.

ALL FITTINGS SHALL BE STRUCTURALLY CHECKED FOR REINFORCEMENTS PER ASTM A998 AND PROVIDED TO THE EOR FOR APPROVAL UPON REQUEST.

CONNECTING BANDS FOR INFILTRATION SYSTEMS SHALL BE ANY TYPE, BUT MUST BE AT LEAST 12" WIDE. BANDS SHALL MATCH THE SPECIFIED CMP COATING AND MEET THE REQUIREMENTS OF AASHTO M 36.

ALL METALLIC COATINGS AFFECTED BY MANUFACTURING FABRICATION SHALL BE REPAIRED PER AASHTO M 36 SECTION 11 REQUIREMENTS (E.G. ZINC-RICH PAINT ON ALL WELDS). IF POLYMER COATINGS ARE USED THE REPAIR OF DAMAGED COATINGS WILL BE IN CONFORMANCE WITH AASHTO M 245 SECTION 11 REQUIREMENTS.

ACCESS LADDERS SHALL BE ATTACHED BY THE MANUFACTURER PRIOR TO DELIVERY, NOT INSTALLED ON THE JOBSITE.
BACKFILL REQUIREMENTS FOLLOW THE GUIDELINES OF AASHTO LRFD BRIDGE DESIGN (SEC 12) AND CONSTRUCTION (SEC 26).

1. MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HALOCH M. MATERIALS UNDER THE PIPE.
 a) THE MINIMUM TRENCH WIDTH (12.6.6.1):
 - PIPE ≤ 12": D + 12";
 - PIPE > 12": 1.5D + 12";

2. THE FOUNDATION UNDER THE PIPE AND SIDE BACKFILL SHALL BE ADEQUATE TO SUPPORT THE LOADS ACTING UPON IT (28.5.2).
3. BEDDING MATERIAL SHALL BE A RELATIVELY LOOSE GRANULAR MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, AND A MINIMUM OF TWICE THE CORRUGATION DEPTH IN THICKNESS, WITH THE MAXIMUM PARTICLE SIZE OF ONE-HALF OF THE CORRUGATION DEPTH (26.3.1, 26.3.3).
4. PERFORATED CORRUGATED STEEL PIPE (CSP/HSL-COR).
5. A HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELLED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR PROPER COMPACTION (28.5.4).
6. BACKFILL MATERIAL SHALL BE A CLEAN, CRUSHED STONE MEETING SIZE NO. 3 OR 4, PER AASHTO M 43. IT IS RECOMMENDED THAT LIFTS NOT EXCEED AN 8" UNCOMPACTED LIFT HEIGHT TO PREVENT UNEVEN LOADING, AND THE LESSER OF 1/3 THE DIAMETER OR 24" AS THE MAXIMUM DIFFERENTIAL SIDE-TO-SIDE COMPACTION OF ALL PLACED FILL MATERIAL IS NECESSARY AND SHALL BE CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE PROJECT ENGINEER, OR THEIR REPRESENTATIVE, IS SATISFIED WITH THE LEVEL OF COMPACTION (26.5.4).
7. INITIAL BACKFILL ABOVE PIPE MAY INCLUDE ROAD BASE MATERIAL (AND RIGID PAVEMENT IF APPLICABLE), SEE TABLE ABOVE.
8. TYPICAL MANWAY DETAIL
 a) OPEN AREA = 3.33 SQ IN/SQ FT
 b) 9/16" to 1 1/2" Fitting Reinforcement may be required based on height of cover and live load condition
 c) PROJECT ENGINEER, OR THEIR REPRESENTATIVE, IS SATISFIED WITH THE LEVEL OF COMPACTION (26.5.4).
 d) SINGLE VERTICAL PIPE EMBEDMENT (26.5.4).
 e) FINAL BACKFILL MATERIAL SELECTION AND COMPACTION REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND SPECIFICATIONS PER THE ENGINEER OF RECORD (26.5.4.1).

NOTES:
- GAGE AND COATING LIMITATIONS APPLY. 5" x 1" IS NOT AVAILABLE IN ALUMINUM.
- DIMENSIONS SUBJECT TO MANUFACTURER’S TOLERANCES.

TYPICAL MANWAY DETAIL

NOT TO SCALE

TYPICAL PERFORATION DETAIL

NOT TO SCALE
PLAIN END CMP RISER PIPE

GENERAL NOTES:
1. DELIVERED BAND STYLE AND FASTENER TYPE MAY VARY BY FABRICATION PLANT.
2. JOINT IS TO BE ASSEMBLED PER AASHTO BRIDGE CONSTRUCTION SPECIFICATION SEC 26.4.2.4.
3. BAND MATERIAL AND GAGE TO BE THE SAME AS RISER MATERIAL.
4. IF RISER HAS A HEIGHT OF COVER OF 10' OR MORE, USE A SLIP JOINT.
5. BANDS ARE NORMALLY FURNISHED AS FOLLOWS:
 - 12" THRU 48" 1-PIECE
 - 54" 2-PIECES
 - 102" THRU 144" 3-PIECES
6. ALL CMP IS REROLLED TO HAVE ANNULAR END CORRUGATIONS OF 2 2/3"x1/2"
7. DIMENSIONS ARE SUBJECT TO MANUFACTURING TOLERANCES.

12" RISER BAND DETAIL

2 2/3"x1/2" RE-ROLLED END HEL-COR PIPE

GENERAL NOTES:
1. JOINT IS TO BE ASSEMBLED PER AASHTO BRIDGE CONSTRUCTION SPECIFICATION SEC 26.4.2.4.
2. BAND MATERIALS AND/OR COATING CAN VARY BY LOCATION. CONTACT YOUR CONTECH REPRESENTATIVE FOR AVAILABILITY.
3. BANDS ARE SHAPED TO MATCH THE PIPE-ARCH WHEN APPLICABLE.
4. BANDS ARE NORMALLY FURNISHED AS FOLLOWS:
 - 12" THRU 48" 1-PIECE
 - 54" THRU 96" 2-PIECES
 - 102" THRU 144" 3-PIECES
5. BAND FASTENERS ARE ATTACHED WITH SPOT WELDS, RIVETS OR HAND WELDS.
6. ALL CMP IS REROLLED TO HAVE ANNULAR END CORRUGATIONS OF 2 2/3"x1/2"
7. DIMENSIONS ARE SUBJECT TO MANUFACTURING TOLERANCES.
8. ORDER SHALL DESIGNATE GASKET OPTION, IF REQUIRED (SEE DETAILS ABOVE).

H-12 HUGGER BAND DETAIL

NOT TO SCALE
CONSTRUCTION LOADING DIAGRAM

NOT TO SCALE

SPECIFICATION FOR CORRUGATED STEEL PIPE-ALUMINIZED TYPE 2 STEEL

SCOPE

This specification covers the manufacture and installation of the corrugated steel pipe (CSP) detailed in the project plans.

MATERIAL

The aluminized type 2 steel coils shall conform to the applicable requirements of AASHTO M264 or ASTM A699. The CSP shall be manufactured in accordance with the applicable requirements of ASTM A760. The pipe sizes, gages and corrugations shall be as shown on the project plans. All fabrication of the product shall occur within the United States.

MATLAB SPECIFICATION

NOT TO SCALE

REINFORCING TABLE

<table>
<thead>
<tr>
<th>Ø CMP RISER</th>
<th>A</th>
<th>B Ø</th>
<th>BEARING PRESSURE (PSF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24"</td>
<td>4"Ø</td>
<td>26"</td>
<td>5" Ø @ 10" OCEW 5" Ø @ 10" OCEW 2,540</td>
</tr>
<tr>
<td>30"</td>
<td>4"Ø</td>
<td>32"</td>
<td>5" Ø @ 10" OCEW 5" Ø @ 10" OCEW 2,260</td>
</tr>
<tr>
<td>36"</td>
<td>5"Ø</td>
<td>38"</td>
<td>5" Ø @ 10" OCEW 5" Ø @ 10" OCEW 2,000</td>
</tr>
<tr>
<td>42"</td>
<td>5"Ø</td>
<td>44"</td>
<td>5" Ø @ 10" OCEW 5" Ø @ 10" OCEW 1,490</td>
</tr>
<tr>
<td>48"</td>
<td>6"Ø</td>
<td>50"</td>
<td>6" Ø @ 10" OCEW 6" Ø @ 10" OCEW 1,210</td>
</tr>
</tbody>
</table>

ASSUMED SOIL BEARING CAPACITY

For temporary construction vehicle loads, an extra amount of compacted cover may be required over the top of the pipe. The height-of-cover shall meet the minimum requirements shown in the table below. The use of heavy construction equipment necessitates greater protection for the pipe than finished grade cover minimums for normal highway traffic.

CONSTRUCTION LOADING DIAGRAM

NOT TO SCALE

HANDLING AND ASSEMBLY

Shall be in accordance with recommendations of the national corrugated steel pipe association (NCSPA).

INSTALLATION

Shall be in accordance with ASHTO standard specifications for highway bridges, section 26, division II or ASTM A760 and in conformance with the project plans and specifications. If there are any inconsistencies or conflicts the contractor should discuss and resolve with the site engineer.

It is always the responsibility of the contractor to follow OSHA guidelines for safe practices.

MANHOLE CAP DETAIL

NOT TO SCALE

96’Ø PERFORATED UNDERGROUND RETENTION SYSTEM - 633277-010 UC IRVINE PROJECT IRVINE, CA SITE DESIGNATION:
COMPONENTS ARE DELIVERED MECHANICALLY ATTACHED (CONTRACTOR TO GROUT TO SOLIDS STORAGE Ø OPENING)

18" CONTECH FRAME AND COVER SEPARATION INLET 1 CYLINDER & INLET GRADE RING/RISER OIL BAFFLE SCREEN FINISHED GRADE SUMP INLET 1 SEPARATION FIBERGLASS TO PROVIDE 24"Ø x 4" 7'-2" 6' Ø I.D. Ø O.D.

ELEVATION VIEW

PLAN VIEW

SECTION A-A

SITE DESIGN DATA

WATER QUALITY FLOW RATE 3.2 CFS
PEAK FLOW RATE 13.5 CFS

MATERIAL LIST (PROVIDED BY CONTECH)

<table>
<thead>
<tr>
<th>COUNT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FIBERGLASS INLET AND CYLINDER</td>
</tr>
<tr>
<td>1</td>
<td>4700 micron, 3" O.D. x 3.5' SEPAR. SCREEN</td>
</tr>
<tr>
<td>1</td>
<td>SEALANT FOR JOINTS</td>
</tr>
<tr>
<td>1</td>
<td>PLC GRADE RINGS/RISERS</td>
</tr>
<tr>
<td>1</td>
<td>24" x 4" FRAME & COVER, EJ41600389, OR EQUIV.</td>
</tr>
<tr>
<td>1</td>
<td>12" x 4" FRAME & COVER, EJ41610201, OR EQUIV.</td>
</tr>
</tbody>
</table>

INSTALLATION NOTES

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE TO CENTER OF CDS STRUCTURE, SCREEN AND SUMP OPENING.
C. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT INLET AND OUTLET PIPE(S). MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ALL PIPE CENTERLINES TO MATCH PIPE OPENING CENTERLINES.
D. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE AT THE PEAK OF PIPE INVERT, ASSUMING PIPE INVERT TO BE AT THE CENTER OF THE SCREEN CYLINDER.
E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.
F. STRUCTURE SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.
G. EFFECTIVE LOAD RATING, ASSUMING EARTH COVER OF 0' - 2', AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO LOAD FACTOR DESIGN METHOD.
H. CDS STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD FACTOR DESIGN METHOD.
I. BASE SURFACE MUST BE SUFFICIENTLY LEVEL AND FREE OF OBSTRUCTIONS TO PROVIDE A FLAT SURFACE IN WHICH THE MANHOLE CAN BE SET.
J. CONTRACTOR TO PROVIDE RINGS TO HDPE 633277 - 20 UCR IVINE PROJECT (DINWIDO - IRVINE, CA)

GENERAL NOTES

1. CONTRACTOR TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
2. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com

DRAWING REVIEWED AND CHECKED:

DATE

DESIGNED:

SHEET:

CHECKED:

DRAWN:

RLH

CONTRACTOR TO PROVIDE RINGS TO HDPE 633277 - 20 UCR IVINE PROJECT (DINWIDO - IRVINE, CA)

CONTECH CONTRACT DRAWING

THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,788,848; 6,641,720; 6,511,595; 6,581,783; RELATED FOREIGN PATENTS, OR OTHER PATENTS PENDING.
Underground stormwater detention and infiltration systems must be inspected and maintained at regular intervals for purposes of performance and longevity.

Inspection

Inspection is the key to effective maintenance of CMP detention systems and is easily performed. Contech recommends ongoing, annual inspections. Sites with high trash load or small outlet control orifices may need more frequent inspections. The rate at which the system collects pollutants will depend more on-site specific activities rather than the size or configuration of the system.

Inspections should be performed more often in equipment washdown areas, in climates where sanding and/or salting operations take place, and in other various instances in which one would expect higher accumulations of sediment or abrasive/corrosive conditions. A record of each inspection is to be maintained for the life of the system.

Maintenance

CMP detention systems should be cleaned when an inspection reveals accumulated sediment or trash. Accumulated sediment and trash can typically be evacuated through the manhole over the outlet orifice. If maintenance is not performed as recommended, sediment and trash may accumulate in front of the outlet orifice. Manhole covers should be securely seated following cleaning activities. Contech suggests that all systems be designed with an access/inspection manhole situated at or near the inlet and the outlet orifice. Should it be necessary to get inside the system to perform maintenance activities, all appropriate precautions regarding confined space entry and OSHA regulations should be followed.

Annual inspections are best practice for all underground systems. During this inspection if evidence of salting/de-icing agents is observed within the system, it is best practice for the system to be rinsed, including above the spring line soon after the spring thaw as part of the maintenance program for the system.

Maintaining an underground detention or infiltration system is easiest when there is no flow entering the system. For this reason, it is a good idea to schedule the cleanout during dry weather.

The foregoing inspection and maintenance efforts help ensure underground pipe systems used for stormwater storage continue to function as intended by identifying recommended regular inspection and maintenance practices. Inspection and maintenance related to the structural integrity of the pipe or the soundness of pipe joint connections is beyond the scope of this guide.
CDS® Inspection and Maintenance Guide
Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allow both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine whether the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS system should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.
<table>
<thead>
<tr>
<th>CDS Model</th>
<th>Diameter</th>
<th>Distance from Water Surface to Top of Sediment Pile</th>
<th>Sediment Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ft</td>
<td>m</td>
<td>ft</td>
</tr>
<tr>
<td>CDS1515</td>
<td>3</td>
<td>0.9</td>
<td>3.0</td>
</tr>
<tr>
<td>CDS2015</td>
<td>4</td>
<td>1.2</td>
<td>3.0</td>
</tr>
<tr>
<td>CDS2015</td>
<td>5</td>
<td>1.3</td>
<td>3.0</td>
</tr>
<tr>
<td>CDS2020</td>
<td>5</td>
<td>1.3</td>
<td>3.5</td>
</tr>
<tr>
<td>CDS2025</td>
<td>5</td>
<td>1.3</td>
<td>4.0</td>
</tr>
<tr>
<td>CDS3020</td>
<td>6</td>
<td>1.8</td>
<td>4.0</td>
</tr>
<tr>
<td>CDS3025</td>
<td>6</td>
<td>1.8</td>
<td>4.0</td>
</tr>
<tr>
<td>CDS3030</td>
<td>6</td>
<td>1.8</td>
<td>4.6</td>
</tr>
<tr>
<td>CDS3035</td>
<td>6</td>
<td>1.8</td>
<td>5.0</td>
</tr>
<tr>
<td>CDS4030</td>
<td>8</td>
<td>2.4</td>
<td>4.6</td>
</tr>
<tr>
<td>CDS4040</td>
<td>8</td>
<td>2.4</td>
<td>5.7</td>
</tr>
<tr>
<td>CDS4045</td>
<td>8</td>
<td>2.4</td>
<td>6.2</td>
</tr>
<tr>
<td>CDS5640</td>
<td>10</td>
<td>3.0</td>
<td>6.3</td>
</tr>
<tr>
<td>CDS5653</td>
<td>10</td>
<td>3.0</td>
<td>7.7</td>
</tr>
<tr>
<td>CDS5668</td>
<td>10</td>
<td>3.0</td>
<td>9.3</td>
</tr>
<tr>
<td>CDS5678</td>
<td>10</td>
<td>3.0</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities
CDS Inspection & Maintenance Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Water depth to sediment¹</th>
<th>Floatable Layer Thickness²</th>
<th>Describe Maintenance Performed</th>
<th>Maintenance Personnel</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. **Note:** to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.